首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12717篇
  免费   2257篇
  国内免费   1404篇
化学   8781篇
晶体学   115篇
力学   864篇
综合类   91篇
数学   1658篇
物理学   4869篇
  2024年   12篇
  2023年   274篇
  2022年   271篇
  2021年   430篇
  2020年   533篇
  2019年   471篇
  2018年   451篇
  2017年   395篇
  2016年   560篇
  2015年   612篇
  2014年   706篇
  2013年   948篇
  2012年   1097篇
  2011年   1167篇
  2010年   807篇
  2009年   740篇
  2008年   822篇
  2007年   770篇
  2006年   691篇
  2005年   566篇
  2004年   419篇
  2003年   341篇
  2002年   299篇
  2001年   270篇
  2000年   231篇
  1999年   280篇
  1998年   256篇
  1997年   192篇
  1996年   210篇
  1995年   210篇
  1994年   181篇
  1993年   156篇
  1992年   130篇
  1991年   143篇
  1990年   147篇
  1989年   109篇
  1988年   91篇
  1987年   79篇
  1986年   59篇
  1985年   63篇
  1984年   28篇
  1983年   33篇
  1982年   26篇
  1981年   20篇
  1980年   13篇
  1979年   10篇
  1978年   8篇
  1977年   10篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
51.
52.
53.
A novel tiled Ti:sapphire(Ti:S)amplifier was experimentally demonstrated with>1 J amplified chirped pulse output.Two Ti:S crystals having dimensions of 14 mm×14 mm×25 mm were tiled as the gain medium in a four-pass amplifier.Maximum output energy of 1.18 J was obtained with 2.75 J pump energy.The energy conversion efficiency of the tiled Ti:S amplifier was comparable with a single Ti:S amplifier.The laser pulse having the maximum peak power of 28 TW was obtained after the compressor.Moreover,the influence of the beam gap on the far field was discussed.This novel tiled Ti:S amplifier technique can provide a potential way for 100 PW or EW lasers in the future.  相似文献   
54.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
55.
Poor bonding strength between nanomaterials and cement composites inevitably lead to the failure of reinforcement. Herein, a novel functionalization method for the fabrication of functionalized graphene oxide (FGO), which is capable of forming highly reliable covalent bonds with cement hydration products, and therefore, suitable for use as an efficient reinforcing agent for cement composites, is discussed. The bonding strength between cement and aggregates was improved more than 21 times with the reinforcement of FGO. The fabricated FGO also demonstrated many important features, including high reliability in cement pastes, good dispersibility, and efficient structural refinement of cement hydration products. With the incorporation of FGO, cement mortar samples demonstrated up to 40 % increased early and ultimate strength. Such results make the fast demolding and manufacture of light constructions become highly possible, and show strong advantages on improving productivity, saving cost, and reducing CO2 emissions in practical applications.  相似文献   
56.
For zeolite catalysts, the regulation of active site and pore structure plays an important role in the enhancement of their catalytic performance. In this work, a one-pot and organic template-free co-regulation route is proposed to straightforwardly synthesize basic mesoporous ZSM-5 zeolites with adjustable alkaline-earth metal species. The synthesis pathway combines two decisive strategies: 1) the seed-induced interface assembly growth method and 2) the acidic co-hydrolysis/condensation of aluminosilicate species and alkaline-earth metal (e.g., Mg, Ca, Sr, or Ba) sources. It is interesting that the mesoporous structure was self-evolved through particle-attached seed-interfacial crystallization without the assistance of any template. Meanwhile, the incorporation of alkaline-earth metals species is homogeneous and highly dispersed in the solid products during the whole crystallization process, and finally generate the superior basicity. Catalysis tests of the as-synthesized samples displayed their novel performance in the typical base reaction of Knoevenagel condensation, even for bulky substrates owing to the enhanced diffusion arising from the meso/microporous network. This finding opens new possibilities for facile, cost-effective, and environmentally friendly synthesis of mesoporous high-silica zeolites with tunable acid/base properties, and deepens our understanding of the particle-attached crystallization.  相似文献   
57.
The development of improved technologies for biomass processing into transportation fuels and industrial chemicals is hindered due to a lack of efficient catalysts for selective oxygen removal. Here we report that platinum nanoparticles decorated with subnanometer molybdenum clusters can efficiently catalyze hydrodeoxygenation of acetic acid, which serves as a model biomass compound. In contrast with monometallic Mo catalysts that are inactive and monometallic Pt catalysts that have low activities and selectivities, bimetallic Pt–Mo catalysts exhibit synergistic effects with high activities and selectivities. The maximum activity occurs at a Pt to Mo molar ratio of three. Although Mo atoms themselves are catalytically inactive, they serve as preferential binding anchors for oxygen atoms while a catalytic transformation proceeds on neighboring surface Pt atoms. Beyond biomass processing, Pt–Mo nanoparticles are promising catalysts for a wide variety of reactions that require a transformation of molecules with an oxygen atom and, more broadly, in other fields of science and technology that require tuning of surface–oxygen interactions.  相似文献   
58.
Smart multifunctional molecular ferroelectrics bearing high Curie temperatures and diverse excellent physical properties, such as second harmonic generation (SHG) responses, luminescence, and semiconductivity, among others, have significant applications but have seldom been documented. Herein, the rare-earth metals Nd and Pr are introduced into a simple molecular system (nBu4N )3[M(NO3)x(SCN)y] (nBu4N=tetrabutyl ammonium, M=rare-earth metal, nBu=CH3CH2CH2CH2), and two new multifunctional molecular ferroelectrics are obtained: (nBu4N )3[Nd(NO3)4(SCN)2] ( 1 ) and (nBu4N )3[Pr(NO3)4(SCN)2] ( 2 ). Their distinct heat and dielectric anomaly dependence on temperature verifies that compounds 1 and 2 experience high-temperature para-ferroelectric phase transitions at 408 and 413 K, respectively. Strikingly, both molecular ferroelectrics possess large spontaneous polarization with Ps values of 9.05 and 8.50 μC cm−2, respectively, and are further characterized by the appearance of multiple intersecting non-180° domains and polarization switching behavior. In particular, compounds 1 and 2 show good stability with only a small decrease in SHG intensity after switching cycles, suggesting that they have great potential for application in nonlinear optical (NLO) switches. Simultaneously, the rare-earth compounds 1 and 2 present bright yellow–red and bright green fluorescence, respectively, at room temperature.  相似文献   
59.
60.
通过介绍混合教学模式在有机化学实验课程教学中的设计、实施情况及效果评价与反馈等内容,与大家分享混合教学模式在有机化学实验课程教学中的应用经验与思考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号